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ABSTRACT
The fundamental goal of Information Retrieval (IR) systems lies in
their capacity to effectively satisfy human information needs - a
challenge that encompasses not just the technical delivery of infor-
mation, but the nuanced understanding of human cognition during
information seeking. Contemporary IR platforms rely primarily on
observable interaction signals, creating a fundamental gap between
system capabilities and users’ cognitive processes. Brain-Machine
Interface (BMI) technologies now offer unprecedented potential to
bridge this gap through direct measurement of previously inacces-
sible aspects of information-seeking behaviour. This perspective
paper offers a broad examination of the IR landscape, providing a
comprehensive analysis of how BMI technology could transform
IR systems, drawing from advances at the intersection of both neu-
roscience and IR research. We present our analysis through three
identified fundamental vertices: (1) understanding the neural corre-
lates of core IR concepts to advance theoretical models of search
behaviour, (2) enhancing existing IR systems through contextual
integration of neurophysiological signals, and (3) developing proac-
tive IR capabilities through direct neurophysiological measurement.
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For each vertex, we identify specific research opportunities and pro-
pose concrete directions for developing BMI-enhanced IR systems.
We conclude by examining critical technical and ethical challenges
in implementing these advances, providing a structured roadmap
for future research at the intersection of neuroscience and IR.
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1 INTRODUCTION
What if IR systems could understand and satisfy our information
needs before we even articulate them? Despite significant advances
in search technology, including Conversational Search and Gen-
erative AI assistants [17, 59], IR systems remain fundamentally
reactive, dependent on explicit user actions to infer intent and rele-
vance, e.g. queries, clicks, dwell time, and browsing patterns [1, 95],
creating a fundamental gap between system capabilities and users’
cognitive processes. This gap is a result of the inherent complex
cognitive states that shape information seeking, i.e. the moment
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an information need (IN) crystallises in a user’s mind, the instanta-
neous judgement of a document’s relevance, or the subtle shifts in
understanding as users process search results [6, 43]. This is further
pronounced in scenarios with ill-defined information needs such as
complex or exploratory search [52], where users may struggle to
verbalise their needs effectively [6, 43]. As such, while these techno-
logical advancements have improved interactive and context-aware
search methods [94], they still require expressed intent, failing to
capture the rich cognitive dimensions of information seeking that
occur before any observable behaviour. Moreover, traditional IR
interfaces remain inaccessible to users with motor disabilities [72],
cognitive impairments [45], or limited literacy, as they depend on
explicit text or voice interactions, reinforcing usability barriers.

At the core of IR is the challenge of understanding and satisfy-
ing users’ information needs [6, 30, 42]. To truly achieve this, IR
systems need to go beyond processing explicit queries and implicit
behavioural signals to interpreting the underlying cognitive states
that drive information seeking. While IR systems have evolved
substantially over decades [5, 94], they remain fundamentally lim-
ited by their inability to directly measure and respond to users’
internal cognitive states [30, 64]. This underscores the need for
cognition-aware IR systems that can directly interpret cognitive
intent, making information access more equitable, efficient, and in-
clusive. We now stand at a transformative juncture: Brain-Machine
Interface (BMI) technologies now offer unprecedented potential to
directly measure and interpret these previously inaccessible aspects
of information-seeking behaviour [60, 64–66].

Research in neuroscience and computational neuroscience has
demonstrated that search behaviour is directly linked to measur-
able brain activity, including query formulation, relevance assess-
ment, and cognitive load, as detected through EEG, fMRI, and MEG
[22, 31, 54, 62, 64, 107, 108]. Studies confirm that relevance decisions
can be predicted up to 500 milliseconds before users consciously
express them [19], and cognitive load variations can be continu-
ously tracked [22], offering real-time insights into user engagement
and retrieval difficulty. These findings suggest that BMI-enhanced
retrieval models offer opportunities to refine search results, predict
frustration, and even anticipate emerging information needs before
users explicitly formulate them [63].

Empirical research further validates the feasibility of BMI en-
hanced IR systems. Recent advances in non-invasive EEG-based
neurophysiological sensing now enable real-time cognitive state
monitoring [57], which can be integrated into retrieval models
to detect frustration, predict relevance, and dynamically refine
search queries [15, 18, 19, 104]. This development fundamentally
transforms IR from passive document retrieval to cognition-aware
search, where systems respond not just to explicit user actions
but to real-time cognitive feedback. Instead of requiring users to
struggle with query formulation, BMI-enhanced search engines
could sense uncertainty, knowledge gaps, and engagement levels,
dynamically adjusting retrieval strategies before users take action
[16, 64, 109]. The convergence of BMI technologywith IR represents
more than just a technical advancement. It offers a fundamental
re-conceptualisation of how we understand and support human
information-seeking behaviour [65, 99].

In this paper, we examine opportunities and challenges for inte-
grating BMI capabilities into IR research, organizing our analysis

around three key vertices: (1) understanding the neural correlates
of information-seeking behaviour to advance theoretical models of
search behaviour, (2) enhancing existing IR systems through con-
textual integration of brain signals, and (3) developing proactive
capabilities that can detect and respond to information needs at
their inception [88]. For each vertex, we identify specific research
opportunities and propose concrete directions for developing BMI-
enhanced IR systems.

Whilst BMI-enhanced IR has great potential, several significant
challenges must be addressed. Brain signal processing remains a
major hurdle, as real-world brain signal acquisition suffers from
high noise levels and requires advanced filtering techniques [39,
51]. Additionally, BMI-enhanced IR must account for substantial
variability in brain responses across individuals [49, 85], making
it difficult to generalise models without personalised adaptations.
Ethical and privacy concerns also present serious obstacles, as brain
data is highly personal, raising issues about consent, security, and
responsible application of neurotechnologies in IR systems [24, 88].

Advancing BMI-enhanced IR requires collaboration across mul-
tiple disciplines, including IR, neuroscience, machine learning, and
human-computer interaction, to ensure that cognition-aware search
is both effective and ethically responsible [23, 60]. The integration of
BMIwith search represents a significant shift in human-information
interaction [53], where search engines evolve from passive tools
into cognition-aware assistants capable of understanding and re-
sponding to intent at the level of thought itself.

The paper is organized as follows. Section 2 introduces BMI prin-
ciples for IR, followed by Section 3, which examines the theoretical
foundations for brain measurement in IR contexts. Sections 3.2 and
3.3 present our identified opportunities for BMI integration in exist-
ing IR systems. Section 4 discusses technical challenges and ethical
considerations, while Section 5 concludes with recommendations
for advancing this research agenda.

2 INTRODUCTION TO NEUROTECHNOLOGY
This section provides an overview of key neuroimaging approaches
and their applications in Brain-Machine Interfaces (BMIs), establish-
ing the technical foundation for their integration with IR systems.

Neuroimaging Technologies. Neuroimaging technologies can
be broadly categorised into invasive and non-invasive approaches,
each offering distinct capabilities for measuring brain activity [20,
27, 37]. Invasive methods, which require surgical implantation of
recording devices, provide the highest spatial and temporal res-
olution for brain signal acquisition. These approaches typically
utilise microelectrode arrays implanted directly into the brain tis-
sue or electrocorticography (ECoG) arrays placed on the cortical
surface [27, 46]. While these methods achieve exceptional preci-
sion in measuring individual neuron activity, their clinical require-
ments present a substantial barrier of entry in comparison to their
non-invasive counterparts, limiting their applicability primarily to
medical/lab-based research contexts [28]. Non-invasive neuroimag-
ing techniques, which measure brain activity without requiring
surgical intervention, offer more practical approaches for studying
cognitive processes in information-seeking contexts. Functional
Magnetic Resonance Imaging (fMRI) [64, 89] is a non-invasive
method and utilises powerful magnetic fields to detect changes
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in blood oxygenation levels associated with brain activity [87]. This
technique provides millimetre-scale spatial resolution throughout
the entire brain, enabling precise mapping of brain activity patterns
during complex cognitive tasks. However, fMRI’s temporal reso-
lution is limited by the inherent delay in blood flow changes, and
its infrastructure requirements—including large, stationary scan-
ning equipment—restrict its use primarily to controlled laboratory
settings [54, 64]. Magnetoencephalography (MEG) offers an alter-
native approach, measuring the magnetic fields produced by brain
activity using highly sensitive sensors positioned around the head
[13]. MEG combines good spatial resolution with excellent temporal
precision, capable of detecting brain signals at the millisecond scale.
This temporal accuracy makes it particularly valuable for studying
the rapid cognitive processes involved in information processing
and decision making. However, like fMRI, MEG requires sophisti-
cated infrastructure and carefully controlled environments, limiting
its practical applications [98]. Among non-invasive technologies,
Electroencephalography (EEG) [13] has emerged as a particularly
promising approach for IR applications [54, 56, 111], offering a bal-
ance of practical utility and measurement capability. EEG systems
measure electrical potentials generated by brain activity through
electrodes placed on the scalp [57]. While their spatial resolution
is limited compared to other methods, modern EEG systems offer
millisecond-scale temporal resolution and have benefited from sig-
nificant advances in dry electrode technology [50] and wireless
recording capabilities [67]. These developments have made EEG
increasingly practical for studying cognitive processes in more
naturalistic settings.

Brain-Machine Interfaces (BMIs). BMIs enable direct commu-
nication between the human brain and external devices through the
measurement and interpretation of brain activity [100]. These sys-
tems function by converting brain activity patterns into commands
that can control computers, devices, or communication systems.
BMIs operate through three main stages: signal acquisition using
neuroimaging methods, signal processing to extract relevant fea-
tures, and translation of these signals into specific commands or out-
puts [76]. Recent advances in machine learning have significantly
enhanced BMI capabilities. Modern systems use sophisticated ar-
chitectures, including transformer models for temporal patterns
[41] and convolutional networks for spatial features [85]. Many
of these approaches share similarities with methods already estab-
lished in IR, such as sequence modelling for query understanding
and representation learning for document encoding. BMI systems
employ various learning strategies, including supervised learning
for direct signal-to-command mapping, reinforcement learning for
adaptive control, and self-supervised learning for robust feature
extraction from unlabelled brain data [79]. These advances have
enabled BMIs to detect and interpret complex cognitive states with
increasing accuracy, moving beyond basic motor control to applica-
tions in emotion recognition and intent prediction. For IR systems,
BMIs offer the potential to directly measure users’ cognitive states
during search tasks. Studies have shown that BMIs can detect rel-
evance judgments [18], measure cognitive load [22], and identify
emerging information needs [64]. While invasive BMIs provide the
highest signal quality, non-invasive approaches, particularly EEG-
based systems, present more practical solutions for IR applications
[31]. However, significant challenges remain in translating these

capabilities to practical applications, including managing signal
variability and achieving real-time processing speeds [51]. Despite
the demonstrated success of BMI methods across various domains,
their potential to enhance IR systems remains largely unexplored.
In the following section, we examine opportunities that these brain
measurement capabilities could bring to IR.

3 OPPORTUNITIES FOR BMI IN IR
The integration of BMIs with IR systems represents a transfor-
mative opportunity to bridge the gap between users’ cognitive
processes and information access systems. While traditional IR re-
lies on explicit queries and observable behaviours, BMI integration
offers unprecedented insight into the brain mechanisms underly-
ing information seeking. We identify opportunities for integration
oriented around three fundamental vertices: (1) understanding neu-
ral correlates of core IR concepts such as IN realisation, relevance
assessment, and satisfaction judgment; (2) enhancing existing IR
systems through real-time cognitive feedback in both search and
recommender systems; and (3) developing neuro-proactive capa-
bilities that can detect and respond to information needs at their
inception. Throughout this section and the following sections, we
propose specific Research Directions (RDs) that highlight promis-
ing avenues for future investigation. These Research Directions
represent concrete paths forward for the IR community to explore
the integration of BMI technologies into information retrieval sys-
tems. Our analysis emphasizes practical opportunities achievable
with current BMI technology, supported by evidence from both
laboratory studies and emerging applications.

3.1 Understanding Neural Correlates of IR
Traditional IR has relied on user studies, think-aloud protocols,
and interaction logs to understand how users satisfy their informa-
tion needs in an information-seeking process [36]. While founda-
tional, these methods offer limited insight into real-time cognitive
processes underlying such processes. Advances in neuroimaging
techniques (e.g. fMRI, EEG, MEG) now enable direct brain activity
measurement during search tasks [55, 62, 64, 73, 75]. This interdis-
ciplinary approach bridges neuroscience and IR by capturing brain
activity during information seeking, revealing how INs emerge,
evolve, and drive search behaviour [60]. Integrating neurophysio-
logical data with traditional methods allows researchers to refine
IR models and develop cognition-aware search systems.

3.1.1 Information Needs. Understanding how information needs
(INs) emerge and evolve is key to advancing cognition-aware IR.
The Neuropsychological Model of IN Realisation [63] identifies
three core processes: (1) memory retrieval, assessing knowledge
availability; (2) information flow regulation, enabling cognitive
transitions; and (3) high-level perception, detecting knowledge
gaps. The posterior cingulate cortex orchestrates these functions,
with heightened activity signalling IN awareness [54, 63, 64]. EEG
studies confirm that IN realisation precedes conscious awareness,
with specific brain activity patterns occurring at different time
points: early electrical responses (known as the N1-P2 complex, ob-
servable 100-200 milliseconds after stimulus presentation) marking
the initial awareness processes, while later brain activity patterns
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(including the N400 and P600 components, occurring 400-600 mil-
liseconds after stimulus) reflect memory control mechanisms that
help distinguish between known and unknown information states
[55]. Michalkova et al. (2022) found that EEG patterns also differ-
entiate correct from incorrect recall, providing a foundation for
cognition-aware IR models that anticipate user needs before explicit
search behaviour begins [55]. The feasibility of real-time cognition-
aware IR has been demonstrated by McGuire and Moshfeghi [54],
who showed EEG-based models predict IN realisation with up to
90.1% accuracy. These findings, combined with fMRI evidence of
pre-query brain activity linked to emerging IN states [64], support
proactive IR systems that anticipate cognitive states before search
initiation.

Neuroimaging research reveals distinct cognitive shifts across
search stages. fMRI studies [62–64] show varying brain activation
patterns from IN to Satisfaction Judgment, reflecting cognitive and
emotional processing. Ji et al. [33] integrate EEG, electrodermal ac-
tivity (EDA), and pupillary responses, confirming that IN is marked
by cognitive load, Query Formulation requires attentional control,
and Relevance Judgment elicits emotional responses. These findings
suggest IR systems should dynamically adapt to users’ evolving
cognitive states. Neuroscientific insights mark a notable shift be-
yond query-based IR. Future systems could detect knowledge gaps,
assess memory recall, and predict search initiation based on cog-
nitive load and uncertainty, enabling intelligent, adaptive search
experiences.

RD1: Expand the theoretical framework of IN realisation by map-
ping its neural correlates across diverse cognitive states, incorporating
multimodal neuroimaging (EEG, fMRI, MEG) to capture transitions
between knowledge awareness, uncertainty, and search intent forma-
tion in real-world search scenarios.

3.1.2 Relevance. Understanding how users perceive and assess
relevance is fundamental to advancing cognition-aware IR. fMRI
studies reveal that relevance processing engages the inferior pari-
etal lobe, inferior temporal gyrus, and superior frontal gyrus—brain
regions linked to attentional control, semantic integration, and
decision-making [62, 64]. Research supporting Saracevic’s multidi-
mensional relevance framework demonstrates distinct pathways
for topical and situational relevance [3, 61, 81]. EEG studies fur-
ther validate this by identifying specific brain responses (known as
event-related potentials or ERPs) that occur at different time points
after viewing content. These include attention-related responses
(around 300 milliseconds after stimulus), semantic processing re-
sponses (around 400 milliseconds), and contextual integration re-
sponses (around 600 milliseconds), all serving as neural markers
of relevance perception, indicating that assessments occur before
conscious articulation [75]. EEG research has also uncovered the
temporal dynamics of relevance assessment, with brain responses
peaking within 500–800ms post-stimulus [19]. Early visual process-
ing (P100) plays a role in initial relevance detection [3], while Kim
et al. [38] demonstrated that ERP components related to seman-
tic congruency (N400) and memory integration (P600) distinguish
between relevant and non-relevant documents.

These findings challenge traditional IR models that assume users
consciously assess relevance only after explicit document review, in-
stead suggesting that subconscious cognitive processing shapes rel-
evance judgments before users verbalise them. However, challenges
remain. Neurophysiological response variability across individu-
als necessitates more generalisable brain-driven relevance models.
While EEG offers high temporal resolution, its spatial precision is
limited, requiring multimodal neuroimaging approaches to fully
capture relevance processing [62, 75]. While technical progress
is promising, challenges remain in making these systems robust
enough for practical applications. Neuroscientific insights into rele-
vance processing open avenues toward cognition-aware IR, where
systems anticipate relevance judgments, refine rankings, and dy-
namically present information based on users’ cognitive states.
These insights show promise to make search experiences more
intuitive, adaptive, and personalised [3, 18, 74, 105].

RD2: Develop cognition-aware relevance models that integrate
real-time brain signals (EEG-based ERPs, fMRI activations) to uncover
how relevance is perceived in dynamic, real-world search contexts,
accounting for evolving task complexity, time pressure, and individual
cognitive variability.

3.1.3 Satisfaction and Search Termination. Satisfaction is a crucial
factor in IR [86, 106], influencing search termination, user engage-
ment, and perceived system effectiveness [93]. Neuroscientific re-
search now offers direct insights into how users determine when
they have fulfilled an IN [70]. fMRI studies reveal that satisfaction
engages brain regions linked to decision-making and emotional
evaluation, including the anterior cingulate, superior frontal gyrus,
insula, and inferior frontal gyrus [70]. These regions differentiate
satisfaction from ongoing search states and support the develop-
ment of cognition-aware IR systems that adapt dynamically to
users’ evolving cognitive states [71]. Recent fMRI investigations
have mapped the brain transitions from IN realisation to relevance
judgment and satisfaction judgment in a search process, showing
distinct cognitive pathways for each phase.

While IN activates attention, working memory, and planning
regions, relevance judgment and satisfaction judgment engage se-
mantic processing and evaluative networks [71]. These insights
refine information foraging models, conceptualising search as an
evidence accumulation process where users continue searching
until a cognitive threshold is reached, at which point brain activity
in decision-making regions declines, and satisfaction emerges [70].
This cognitive threshold model shares interesting parallels with
Herbert Simon’s concept of “satisficing,” where decision-makers
accept solutions that meet a threshold of adequacy rather than
pursuing optimal solutions [? ]. While the relationship between
satisfaction judgment in search and satisficing behaviour remains
under-explored, neurophysiological methods offer promising ap-
proaches to investigate whether the cognitive mechanisms underly-
ing these processes share common neural substrates. Understanding
this relationship could significantly advance our theoretical models
of search termination behaviour and enhance the development of
systems that better accommodate users’ natural decision-making
processes.

Distinguishing satisfaction from frustration is vital for enhancing
IR experiences. Satisfaction correlates with reduced cognitive load
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and heightened reward-related activity, while frustration manifests
as increased amygdala and prefrontal cortex activation, signalling
cognitive dissonance [71]. Recognising these distinctions may al-
low cognition-aware IR systems to anticipate user frustration and
intervene pre-emptively by adjusting retrieval strategies based on
inferred cognitive states.

RD3: Advance the understanding of satisfaction realisation by
examining its neurophysiological underpinnings across diverse task
types, user expertise levels, and external influences, developing cognition-
aware IR models that predict and adapt to user satisfaction in real-
world, high-stakes search scenarios.

3.1.4 Contextual Human Factors. Beyond satisfaction, neurophysi-
ological research has revealed how cognitive and emotional states
fundamentally shape information-seeking behaviour. Studies demon-
strate that different search tasks create distinct cognitive load pat-
terns [10, 21], with factors such as task complexity, time pressure,
and user expertise significantly influencing brain responses. This
cognitive variability manifests not only in task execution but also
in how users process and interact with search interfaces [12], sug-
gesting the need for systems that can dynamically adapt to users’
cognitive states [94]. The emotional dimensions of search behaviour
are equally critical. Neuroscientific research has identified distinct
brain signatures for various emotional states during search, includ-
ing frustration, engagement, and uncertainty [2, 61]. Importantly,
these brain indicators often precede observable behaviours, offering
opportunities for proactive system intervention [25]. For instance,
detecting early signs of user frustration could enable systems to ad-
just result presentation or provide additional support before users
abandon their search [96].

The integration of these cognitive and emotional insights into IR
systems represents a significant advancement beyond traditional
behavioural approaches [31]. While current research demonstrates
the feasibility of measuring neural correlates during search tasks
[19, 64], the greater potential lies in developing systems that ac-
tively respond to users’ cognitive and emotional states [22]. This
approach requires rethinking traditional evaluation methods [36]
to incorporate metrics that capture cognitive load, emotional en-
gagement, and search effectiveness [80]. Future research should
prioritise understanding how different cognitive states influence
search performance [18], developing more sophisticated models of
user engagement, and creating adaptive systems that provide per-
sonalized support based on real-time neurophysiological feedback
[94]

RD4: Investigate how different cognitive and emotional states
(including frustration, engagement, and uncertainty) influence search
behavior and performance, developing models that can predict and
respond to these states to create more personalized search experiences.

3.2 Neurophysiological Enhancement of IR
While BMIs present transformative potential for better understand-
ing physical manifestations of IR concepts, immediate opportunities
exist for enhancing current IR systems through targeted integration
of neurophysiological data. This section examines how brain signals
can address specific limitations in two fundamental components
of modern information access: search and recommendation. Search

system enhancements focus on bridging the gap between users’ in-
ternal information needs and their external expressions, potentially
transforming how users interact with search interfaces. Recom-
mender system applications leverage neural signals to create more
accurate and responsive personalization models, addressing critical
challenges such as cold-start problems and real-time preference
detection. We emphasize practical implementations within existing
IR frameworks while acknowledging the technical challenges and
research opportunities that emerge from integrating brain signals
into operational systems.

3.2.1 Enhancement of Search. Search systems face fundamental
limitations in their ability to effectively capture and respond to
users’ information needs [6, 30], despite significant advances in
search technology [59, 94]. These limitations manifest primarily in
three critical areas: query formulation and refinement [6, 90], search
task adaptation [52, 97], and results presentation [1, 34]. Traditional
search interfaces rely heavily on explicit textual input, creating a
significant cognitive burden as users struggle to externalize their
information needs into effective queries [6, 90]. This challenge
is particularly acute when information needs are ill-defined or
evolving, leading to a persistent semantic gap between users’ mental
models and their textual expressions [30, 64].

Query formulation and refinement present significant opportu-
nities for neurophysiological enhancement of IR systems through
two primary pathways: enhancement of existing query mecha-
nisms and direct brain querying [6, 18, 31]. Traditional IR ap-
proaches rely heavily on query representations, whether sparse
(e.g., boolean, BM25) or dense (neural embeddings) [1, 5, 48, 68, 77].
While both paradigms have proven effective, they fundamentally
depend on explicit textual input, introducing an inherent semantic
gap between users’ cognitive models and their expressed queries
[6, 30, 42, 90]. Classic query expansion methods, from relevance
feedback [1, 78] to pseudo-relevance feedback [11, 44], attempt to
bridge this gap by leveraging document collections or user interac-
tions [91, 94]. Modern neural approaches to query expansion [69]
have further advanced this capability through contextual under-
standing and semantic matching. However, these methods remain
constrained by their reliance on initial query terms, which often in-
adequately capture the richness of users’ internal information needs
[6]. Recent advances in brain decoding suggest promising solu-
tions through the integration of brain-derived semantic information
[9, 29, 58, 101, 102] into query representations [19, 103, 109]. Con-
temporary brain decoding techniques have been shown to extract
complex semantic features from brain activity [29, 58, 101, 102], po-
tentially enabling systems to capture aspects of information needs
that users struggle to verbalize [109]. This capability could enhance
both sparse and dense query representations in several ways. For
sparse representations, brain signals could identify relevant terms
not explicitly mentioned in the user’s query but present in their
cognitive processing. In dense representations, brain-derived se-
mantic features could be integrated directly into the embedding
space, potentially improving the alignment between query vectors
and users’ intended search targets [109].

A more transformative approach involves bypassing explicit
query formulation entirely through direct brain querying. As dis-
cussed, advanced neurophysiological decoding techniques have
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demonstrated increasingly robust capabilities in extracting seman-
tic information from brain signals [14, 83]. These advances suggest
the possibility of implementing continuous pre-engagement moni-
toring, where systems actively process brain signals during normal
task execution. Through established semantic decoding methods
[29, 58, 101–103], these signals could be translated into dynamic
query representations that more accurately reflect users’ internal
states. The technical implementation of BMI-enhanced querying
presents several architectural possibilities. One approach involves
mapping decoded brain patterns to existing semantic spaces used in
modern retrieval models. This could involve training cross-modal
encoders that align brain activity patterns with textual seman-
tic representations [29]. Alternatively, retrieval models could be
adapted to operate directly on brain signal patterns, potentially
enabling more direct matching between cognitive states and docu-
ment representations [19]. Recent work demonstrates the feasibility
of training models to predict relevance judgments from brain sig-
nals [18], suggesting similar approaches could be applied to query
formulation.

The integration of brain signals into query processing offers sev-
eral distinct technical advantages. First, it enables more equitable
information access by providing alternative interaction pathways
for users with motor impairments or those who struggle with tra-
ditional text input [45, 72]. Second, it could enable a more precise
capture of search intent, particularly valuable for complex or ex-
ploratory search tasks where users struggle with query articula-
tion [52, 97]. Third, it could facilitate continuous query refinement
based on unconscious relevance judgments, and shifting informa-
tion needs [19, 64]. Fourth, it may allow automatic task adaptation
through brain pattern classification, enabling systems to dynami-
cally adjust retrieval strategies based on detected cognitive states
[22, 31]. These capabilities are particularly relevant for scenarios
involving complex information needs, where traditional query for-
mulation often falls short [6, 47].

RD5: Develop methods for effectively integrating neurophysiologi-
cal signals into existing search engines, focusing on query enhance-
ment, result re-ranking, and interface adaptation without requiring
fundamental changes to system architecture.

3.2.2 Enhancement of Recommender Systems. Recommender sys-
tems represent a critical component of modern information ac-
cess [84], yet face persistent challenges in accurately modelling
user preferences and providing timely, contextually relevant rec-
ommendations [26, 35]. Traditional approaches rely on historical
interaction data and explicit user actions [7], creating fundamental
limitations in their ability to capture emerging interests and imme-
diate information needs [91, 94]. The integration of neurophysio-
logical data offers promising opportunities to address these limi-
tations through direct measurement of users’ cognitive responses
to recommendations [15, 18, 111] and real-time preference detec-
tion [31, 111].

Brain signals offer significant potential for advancing personali-
sation in recommender systems by addressing several fundamental
limitations of current approaches [18, 31]. Contemporary person-
alisation systems face three critical challenges where BMI inte-
gration could provide transformative solutions. First, the inherent
latency between a user’s cognitive response and their observable

actions creates a significant temporal gap in adaptation mecha-
nisms [23, 82]. This delay means that by the time traditional sys-
tems detect preference shifts through behavioural signals, the user’s
actual interests may have already evolved [94]. Second, behavioural
indicators such as clicks and dwell time suffer from fundamental
ambiguity - they may reflect genuine interest, confusion, or various
forms of interaction bias, making it difficult to draw reliable con-
clusions about user preferences [34, 110]. Third, and perhaps most
significantly, existing approaches lack the capability to measure the
underlying cognitive context that shapes how users evaluate and
process recommendations [36, 97], limiting their ability to provide
truly context-aware personalisation [91].

Recent neuroscientific research has demonstrated robust ap-
proaches for addressing personalisation limitations through di-
rect measurement of cognitive states during information interac-
tion [18, 64]. Neuroimaging studies, particularly using fMRI, have
identified specific activation patterns in the anterior cingulate cor-
tex and prefrontal regions that correlate with preference forma-
tion and decision-making processes [61, 62]. These brain markers
emerge rapidly, with studies showing reliable detection within 200-
300ms post-stimulus [19, 73], significantly preceding observable
behavioural responses. Complementary EEG research has further
validated the feasibility of detecting preference-related signals dur-
ing initial information exposure [3, 75], establishing a foundation
for real-time preference modelling. A particularly promising ap-
plication of these neurophysiological insights lies in addressing
the cold-start problem, a persistent challenge in recommender sys-
tems [26, 94]. Traditional solutions rely on sparse initial interactions
or demographic approximations, approaches that often fail to cap-
ture authentic user interests and preferences [7, 36]. Through the
monitoring of cognitive responses during early system interactions,
recommender systems could construct more accurate initial user
models [15, 18]. This capability may have particular promise in
domains where users possess limited domain expertise or struggle
with preference articulation [6, 52], potentially enabling more rapid
convergence on effective personalisation strategies [31].

Furthermore, real-time preference detection and adaptation are
potential areas that may benefit from the integration of BMI sys-
tems [18, 31]. While contemporary systems have made significant
advances through implicit feedback mechanisms [1, 34], they re-
main constrained by their reliance on observable behaviours, creat-
ing an inherent delay between preference formation and system
adaptation [94]. BMI technologies offer unprecedented opportuni-
ties to bridge this gap through direct brain measurement of user
responses [3, 22]. Prior art has demonstrated that brain signals can
effectively differentiate between levels of user engagement, interest,
and satisfaction [61, 75], often preceding observable behavioural
indicators by several hundred milliseconds [19]. These capabilities
suggest promising directions for developing more sophisticated
and responsive recommendation algorithms that can adapt in real-
time to users’ cognitive states [15, 31]. Neurophysiological signal
integration into recommender systems presents novel evaluation
challenges that extend beyond traditional accuracy metrics [26, 80].
While established frameworks effectively measure ranking perfor-
mance [32], they cannot adequately capture the cognitive bene-
fits of neurophysiological enhancement [23, 36]. Future research
must develop evaluation methodologies that assess both system
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performance and cognitive alignment [18, 31], while addressing
the technical complexities of real-time neurophysiological signal
processing [51, 85].

RD6: Pursue BMI-enhanced recommender systems, with particular
focus on addressing cold-start challenges, enabling rapid response to
evolving user interests, and developing novel evaluation frameworks
that capture both algorithmic performance and cognitive alignment.

Neurophysiological signal integration into recommender sys-
tems presents novel evaluation challenges that extend beyond tra-
ditional accuracy metrics [26, 80]. While established frameworks
effectively measure ranking performance [32], they cannot ade-
quately capture the cognitive benefits of neurophysiological en-
hancement [23, 36]. Future researchmust develop evaluationmethod-
ologies that assess both system performance and cognitive align-
ment [18, 31], while addressing the technical complexities of real-
time neurophysiological signal processing [51, 85].

3.3 Neurophysiological Enabled IR Systems
While Section 3.2 addressed how brain signals can enhance existing
IR paradigms, this section explores transformative new interaction
models that fundamentally reimagine information access. Rather
than merely augmenting conventional search and recommenda-
tion systems, these approaches establish entirely new interaction
paradigms where neurophysiological activity becomes the primary
communication channel between users and information systems.
Recent BMI developments have demonstrated the viability of direct
brain pathways for system control [76, 88], suggesting opportuni-
ties for novel search interfaces that operate beyond traditional input
mechanisms. Building on these advances, we propose a comprehen-
sive framework for neurophysiological IR systems encompassing
three complementary approaches: BMI-controlled systems enabling
direct thought-based interaction [8, 28], neuroadaptive systems
that dynamically respond to users’ cognitive states [18, 31], and
neuroproactive systems that anticipate information needs before
explicit expression [54, 63]. Together, these approaches represent
not incremental improvements but a fundamental shift in human-
information interaction paradigms [23, 94].

3.3.1 BMI-Controlled IR. BMI-controlled IR systems represent a
direct application of BMI capabilities to search interaction [76, 100].
Recent advances in brain decoding have demonstrated increasingly
sophisticated capabilities in translating brain signals into seman-
tic representations [29, 58, 101, 102], enabling more natural query
formulation [58, 109]. This advance is particularly significant as
modern brain decoding techniques can capture nuanced semantic
relationships [29, 102], potentially enabling more precise query ex-
pressions than traditional keyword-based approaches. BMI-control
shows particular promise for complex information-seeking tasks
that exceed the capabilities of traditional interfaces [47, 52]. How-
ever, implementing brain control for IR systems presents distinct
technical challenges beyond basic interface manipulation [28, 51].
Search interaction requires more sophisticated control mechanisms
to support result navigation, dynamic filtering, and precise selec-
tion [8, 88]. These capabilities must maintain reliability across vary-
ing cognitive states while enabling efficient information explo-
ration [22, 31]. The integration of real-time error correction and
feedback mechanisms becomes particularly critical for maintaining

search precision [79, 85]. Research demonstrates that brain control
mechanisms can enable more intuitive information exploration
through continuous content scanning and dynamic filtering [8, 76],
yet achieving reliable and precise control for practical deployment
presents significant technical hurdles [51, 85]. Several fundamental
challenges must be addressed to realize BMI-controlled IR systems:
developing robust decoding methods optimized for search inter-
actions [79], maintaining control precision across varying cogni-
tive states [88], and establishing comprehensive evaluation frame-
works [92]. Critical to success is the integration of real-time error
correction and feedback mechanisms that ensure system respon-
siveness while preserving user agency [18, 31]. Addressing these
challenges could transform information access, enabling more nat-
ural and efficient human-information interaction [4, 53, 94].

RD7: Design and evaluate novel direct brain-to-system interaction
paradigms that enable hands-free search control, with particular em-
phasis on supporting users with motor impairments and optimizing
the precision-versus-efficiency tradeoff in brain command interpreta-
tion.

3.3.2 Neuroadaptive IR. Neuroadaptive IR systems introduce con-
tinuous cognitive state monitoring to enable dynamic optimization
of search interfaces and retrieval strategies. These systems would
aim to utilize real-time brain measurements to detect variations in
cognitive load [22], uncertainty [62], and engagement [18], creating
opportunities for precise adaptation of the search experience. This
capability may enable search systems to respond to users’ cognitive
states as they evolve throughout the information-seeking process
[30, 42, 56]. The adaptive mechanisms in these systems could op-
erate across multiple dimensions of the search interaction. At the
interface level, detection of increased cognitive load can trigger
automatic adjustments to result in presentation, including simplifi-
cation of layouts, modification of information density, and provision
of additional contextual support [21, 33, 39]. The adaptation extends
to the underlying retrieval mechanisms, where the detection of user
uncertainty may influence result diversity or trigger refinements
to query understanding. A critical consideration in neuroadaptive
systems is the significant variation in brain patterns and cognitive
processing across users [51, 85]. Individual differences in brain sig-
natures necessitate adaptive frameworks that can calibrate to each
user’s specific patterns while maintaining consistent performance
[41, 92]. This personalization must address multiple system com-
ponents, including signal interpretation, interface behaviour, and
feedback mechanisms [7, 88, 91]. Early research demonstrates that
neuroadaptive systems can effectively interpret brain signals to in-
fer relevant judgments [18, 19] and detect cognitive load variations
during search tasks [21, 39]. The development of neuroadaptive IR
systems requires careful consideration of the temporal dynamics of
cognitive state changes and the corresponding system responses.
The challenge lies not only in the accurate detection of cognitive
states but also in determining appropriate adaptation strategies
that enhance rather than disrupt the search process. This includes
maintaining a balance between system responsiveness and stability,
ensuring that adaptations support rather than interfere with users’
natural information-seeking behaviours.

RD8: Create comprehensive frameworks for neuroadaptive IR sys-
tems that continuously monitor cognitive states, automatically adjust
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retrieval strategies, and dynamically modify interface elements while
maintaining user agency and system explainability.

3.3.3 Neuroproactive IR. Neuroproactive IR systems introduce an-
ticipatory information delivery capabilities by detecting and re-
sponding to information needs before their explicit expression
[54, 56, 63]. Building on advances in brain decoding of semantic
information during query formulation [29, 58, 109] (discussed in sec-
tion 3.2.1), these systems may enable the identification of emerging
information needs through continuous monitoring of brain signals,
creating opportunities for pre-emptive information delivery. The
approach offers particular value in time-sensitive contexts and com-
plex tasks where maintaining cognitive flow directly impacts task
performance [10, 21, 40].

The technical foundation of neuroproactive systems rests on two
integrated processes: brain signature translation and contextually-
aware information delivery. The first process involves continuous
monitoring and interpretation of brain signals to identify patterns
indicative of emerging information needs, leveraging the same
semantic decoding techniques that enable enhanced query formu-
lation [29, 58, 102]. The second process determines optimal timing
and methods for information delivery based on the user’s current
cognitive state and task context [25, 97]. Research has demonstrated
the technical feasibility of this approach, with studies showing suc-
cessful detection of information needs through brain signals ap-
proximately 500ms before conscious awareness [19, 55, 63]. Beyond
basic need detection, these systems show potential for assessing
the urgency and complexity of information needs, enabling more
sophisticated delivery strategies [54, 70].

Implementation of neuroproactive IR systems presents distinct
technical challenges that require careful consideration. Signal pro-
cessing in real-world environments must address various sources of
noise and interference while maintaining reliable detection of rele-
vant brain patterns [51]. Individual variations in brain signatures
necessitate robust adaptation mechanisms to ensure consistent
performance across users [85]. The development of appropriate
evaluation frameworks presents another significant challenge, as
traditional IR metrics focused on post-query performance cannot
adequately assess pre-emptive information delivery. New evalua-
tion approaches must consider brain-state alignment, cognitive load
reduction, and the effectiveness of anticipatory information provi-
sion [80]. The ethical implications of neuroproactive systems re-
quire particular attention during development and deployment. The
continuous monitoring of brain signals raises important questions
about privacy and data protection, as these signals may contain
sensitive personal information beyond immediate search-related
patterns [88].

RD9: Develop anticipatory IR systems that leverage brain signals
to identify and satisfy emerging information needs.

The success of neuroproactive IR systems ultimately depends
on achieving an optimal balance between technical capability and
human factors. While the challenges are significant, the potential
benefits—including reduced cognitive load, improved task efficiency,
and more intuitive information access for users with motor or
cognitive impairments [45, 72]—justify continued research and
development in this direction.

4 CHALLENGES OF BMI IN IR
The integration of BMI systems within IR presents transforma-
tive opportunities, yet realising this potential requires addressing
several fundamental challenges. This section examines four core
challenges that must be addressed to enable the practical imple-
mentation of BMI-enhanced IR systems.

Task-Specific Neuroimaging Challenges. The implemen-
tation of BMI-enhanced IR systems requires careful matching of
neuroimaging capabilities to specific information-seeking tasks
[76]. This presents unique challenges that go beyond basic tech-
nology selection, particularly when considering real-world deploy-
ment scenarios. A primary challenge lies in balancing measurement
requirements across different search stages. Early-stage search pro-
cesses, such as IN formation, require precise spatial localization to
identify specific brain activation patterns [64]. However, later-stage
processes like relevance assessment demand high temporal resolu-
tion to capture rapid cognitive state changes [19]. This temporal-
spatial tradeoff becomes particularly acute when attempting to
support complete search sessions, where both types of measure-
ment may be necessary. System deployment contexts create ad-
ditional constraints. Laboratory-grade technologies that provide
optimal measurements often prove impractical in realistic search
environments due to cost, infrastructure requirements, and user ac-
ceptance factors [57]. This creates a fundamental tension between
measurement quality and practical usability that must be resolved
for each specific application context. The challenge extends beyond
single-technology solutions. While hybrid systems combining mul-
tiple neuroimaging modalities offer theoretical advantages, they
introduce significant complexity in signal integration and real-time
processing [88]. Questions of how to optimally combine and weight
signals from different sources, particularly when they provide con-
flicting information, remain largely unresolved. These challenges
are compounded by the diversity of search behaviours. Systems
designed to support exploratory search may require sustained mon-
itoring of cognitive load and engagement [22], while those focusing
on rapid information lookup need to prioritize detection of short-
term state changes [3]. Creating frameworks that can effectively
match technology capabilities to these varied requirements while
maintaining practical feasibility represents a critical research chal-
lenge.

RD10: Optimize neuroimaging technology selection for IR tasks
through systematic evaluation.

Real-time Brain Signal Analysis for IR. The dynamic nature
of information seeking creates unique challenges for processing
brain signals in BMI-enhanced IR systems [51]. These challenges
extend beyond general signal processing concerns to address spe-
cific requirements of search interaction. Analysing brain signals
during active search requires distinguishing between task-relevant
cognitive processes and incidental brain activity. For example, when
users examine search results, eye movements and reading-related
brain patterns can mask the subtle signatures associated with rele-
vance judgments [22]. Traditional artefact removal techniques often
eliminate potentially valuable information about natural search be-
haviours, creating a tension between signal clean-up and preserva-
tion of meaningful search-related patterns. The temporal structure
of search interactions presents particular processing challenges.
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Different search stages - from query formulation to result exami-
nation - occur at varying time scales and generate distinct brain
patterns [19]. Processing approaches must adapt to these changing
temporal dynamics while maintaining consistent performance. This
becomes especially challenging when users rapidly switch between
search sub-tasks, requiring systems to detect and process overlap-
ping brain signatures. Current machine learning approaches for
brain signal processing, while powerful, face significant limitations
in IR contexts. Deep learning models have shown promise for de-
coding search-related brain patterns [79], but their computational
requirements often conflict with the need for real-time processing.
Additionally, these models typically assume relatively stable brain
signatures, whereas search behaviour can produce highly variable
patterns depending on task complexity and user expertise [64].
The need to maintain system responsiveness while ensuring signal
quality creates particular challenges for BMI-enhanced IR.

RD11: Advance real-time brain signal processing techniques opti-
mised for search interaction patterns.

Evaluation Framework Development. The development and
evaluation of BMI-enhanced IR systems are currently hampered by
a lack of standardised, publicly available datasets that combine brain
and search interaction data. Unlike traditional IR, where large-scale
evaluation collections enable reproducible research, the collection
of brain data during search tasks requires specialised equipment
and careful experimental protocols. This has resulted in small, often
incompatible datasets that limit the development of generalizable
approaches. Furthermore, existing IR evaluation metrics may not
adequately capture the cognitive benefits that BMI enhancement
could provide. Traditional metrics focus on retrieval effectiveness
and user satisfaction but may not reflect improvements in cogni-
tive load reduction or the quality of proactive information delivery.
This necessitates the development of new evaluation frameworks
that can assess both traditional retrieval effectiveness and cogni-
tive support capabilities [21]. The temporal nature of brain signals
also presents unique challenges for evaluation. While traditional IR
metrics often focus on discrete events like clicks or query submis-
sions, brain signals provide continuous data streams that require
new approaches to measurement and evaluation. Additionally, the
relationship between brain states and search satisfaction may not
be linear or easily quantifiable, requiring more sophisticated evalu-
ation approaches.

RD12: Establish ethical frameworks and privacy protocols for
BMI-enhanced information seeking.

Privacy and Agency in BMI-Enhanced Search. The integra-
tion of brain measurements into IR systems introduces fundamental
privacy and ethical challenges that go beyond traditional concerns
about search data protection [88]. These challenges emerge from
the unique nature of brain signals in information seeking contexts.
Search behaviour inherently reveals users’ knowledge gaps, inter-
ests, and decision-making processes. For example, brain signals
could reveal uncertainty or confusion about search results before
users consciously recognize these states [63], raising questions
about the boundaries between observable behaviour and private
cognitive processes. The proactive capabilities enabled by brain
measurements create particular ethical tensions in IR contexts.
While early detection of information needs could improve search
efficiency [18], it also raises concerns about system influence over

users’ natural information-seeking patterns. This becomes espe-
cially critical in scenarios where users are exploring new topics or
forming opinions, as system interventions based on brain signals
could potentially shape users’ learning trajectories and belief for-
mation. Search history has traditionally been considered sensitive
personal data, but brain signals from search interactions add new
dimensions to privacy considerations. These signals may reveal not
just what information users seek, but their emotional responses,
cognitive biases, and decision-making patterns during search [22].
This richness of personal data creates new risks for potential mis-
use, particularly in contexts where search behaviour might reveal
sensitive personal characteristics or vulnerabilities. The long-term
implications of BMI-enhanced search systems raise additional eth-
ical concerns. Regular exposure to systems that can detect and
respond to cognitive states may alter how users approach informa-
tion seeking, potentially creating dependency on BMI-enhanced
features or changing natural learning and discovery processes [31].
These effects could be particularly significant for developing minds
or in educational contexts.

RD13: Develop comprehensive evaluation methodologies for BMI-
enhanced IR systems.

5 SUMMARY
This perspective paper has explored the transformative potential
of BMIs in advancing IR beyond its current limitations. While tra-
ditional IR systems rely on explicit user input—queries, clicks, and
interaction signals—to infer intent, they remain inherently reactive
and unable to capture the deeper cognitive dimensions of infor-
mation seeking. This constraint is particularly evident in high-
complexity domains and among users who struggle to articulate
their needs due to cognitive or physical barriers. By integrating BMI
technologies, IR systems can transition from passive, interaction-
driven models to proactive, cognition-aware retrieval. Neuroscien-
tific research has demonstrated that search behaviours, including
query formulation, relevance assessment, and cognitive load, are
directly linked to measurable brain activity. Empirical findings
suggest that BMI-enhanced IR models could refine search results
dynamically, predict user frustration, and even anticipate emerging
information needs before they are explicitly formulated. These ca-
pabilities have the potential to redefine IR, making search systems
more intuitive, adaptive, and accessible.

BMI-powered IR presents a wealth of opportunities for future
research and development. To fully realise the potential of cognition-
aware search, foundational work must continue in understanding
the neuroscience underlying IR, including the brain mechanisms
involved in information seeking, decision-making, and relevance
assessment. The opportunities identified through BMI integration
directly address fundamental limitations in current IR methodolo-
gies. First, traditional IR systems struggle with accessibility, exclud-
ing users with motor impairments or those who find text-based
interaction challenging. Second, current approaches cannot effec-
tively handle ill-defined information needs, where users struggle to
articulate their requirements through conventional queries. Third,
existing IR methods rely on indirect behavioural signals that of-
ten misalign with users’ true internal cognitive states, creating
a persistent gap between system understanding and actual user
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intent. BMI integration offers promising solutions to these limita-
tions through direct brain measurement, enabling more inclusive,
intuitive, and cognitively-aligned information access. Equally im-
portant is the seamless integration of BMI with existing IR models,
enabling systems to enhance their performance through real-time
cognitive feedback. Furthermore, the development of entirely new
IR paradigms designed to unlock the full potential of brain-driven
search interactions could lead to fundamental advancements in
human-information interaction.

This paper has outlined critical research directions that must
be pursued to bridge these gaps, including the refinement of neu-
rophysiological models for IR, the design of scalable and ethical
brain-sensing technologies, and the implementation of cognition-
aware retrieval frameworks. Despite these promising advancements,
significant challenges remain. The integration of BMI into IR re-
quires overcoming technical hurdles such as low signal-to-noise
ratios in brain data, variability in brain responses across individu-
als, and the need for real-time processing. Additionally, ethical and
privacy considerations surrounding brain data must be carefully
addressed to ensure the responsible development and deployment
of cognition-aware search systems. Future research must also estab-
lish robust interdisciplinary collaborations across IR, neuroscience,
machine learning, and human-computer interaction to develop scal-
able, interpretable, and user-centric BMI-driven retrieval models.
Ultimately, the integration of BMI into IR is not merely an enhance-
ment of existing IR systems. It represents a fundamental transition
in how humans interact with information. As BMI technology con-
tinues to evolve, IR systems will no longer be confined to explicit
inputs but will instead become cognition-aware assistants capable
of anticipating and responding to information needs at the level
of thought itself. By setting forth this perspective, we provide a
roadmap for the next generation of proactive IR systems, outlining
the opportunities, challenges, and research directions needed to
realise the full potential of cognition-aware search.
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